

Bounding Volume Hierarchies

given a set S of objects like polygons, if $|S| \leq k$, $B V H(S)$ is a leaf node b that stores S, otherwise it is a node v with a number n_{v} of children $v_{1} \ldots, v_{n}$, where v_{i} is the $B V H\left(S_{i}\right)$, where $S_{i} \subseteq S: \bigcup S_{i}=S$, i.e. is a subset of S and v stores a bounding volume $b_{v}(v)$ from
 a set of possible bounding volumes such that $\forall p \in S$: $p \subseteq b_{v}(v)$, i.e. each polygon is completely included into the space

types of BVH

- layered BVH: \forall children $v_{i}, b_{v}\left(v_{i}\right) \subseteq b_{v}(v)$
- wrapped BVH: \forall leaves v_{i} of the node $v, S\left(v_{i}\right) \subseteq b_{v}(v)$

types of bounding volumes

Cylinder
[Weghorst et al., 1985]

Box, AABB (R*-trees) [Beckmann, Kriegel, et al., 1990]

Convex hull [Lin et. al., 2001]

Sphere
[Hubbard, 1996]

Prism
[Barequet, et al., 1996]

OBB (oriented bounding box) [Gottschalk, et al., 1996]

Intersection of several, other BVs

Tightness

let S be a surface or a mesh, B a BV such that $S \subseteq B$, we can define the directed Hausdoff distance $h(B, S)=\max _{p \in B} \min _{q \in S} d(p, q)$, in general d is the $\mathbf{L} 2$ norm. i.e. it is the distance between a point in S and the closest border of B.
given the diameter $\operatorname{diam}(S)=\max _{p, q \in S} d(p, q)$
the tightness is $\tau(B, S)=\frac{h(B, S)}{\operatorname{diam}(S)}$, i.e. HD
distance normalized with respect to the maximum distance between 2 points in S, this is in practice the relative length of the line
connecting a point of S to the border of B, where $0 \leq \tau \leq \frac{1}{2}$, where $\tau=0$ if the point is on the border of B and $\tau=\frac{1}{2}$ if the point is in the center of B

BVH construction

given a set of polygons in 3D S, we consider the midpoints $p_{i} \in S$, we calculate the PCA between them and transform the p_{i}, then we compute the median along the most spreaded, being the principal component, we now partition the set of points along this and obtain 2 subsets $L, R,: S=L \cup R$
we can now improve with a sweep plan approach, to do this we construct a cost function $C(L, R)=P\left(\right.$ traverse $\left._{L}\right) C(L)+P\left(\right.$ traverse $\left._{R}\right) C(R)$. since those probabilities are case-dependent we will now consider the case of ray tracing.
let's take a bounding volume parent box, we are going to sweep a plane in the principal axis and splitting the set to obtain a inner bounding volume, now, considering the origin of the ray we can compute all the orientations for which we can obtain an interception wit the the
 parent or child Bounding Volume, we end up with 2 angle spans θ_{w}, θ_{v}, the probability of a traversal is just $\frac{\theta_{w}}{\theta_{v}} \approx$ $\frac{\text { area }(w)}{\text { area }(v)}$
it follows that
$C(L, R)=\frac{\operatorname{area}(\operatorname{bbox}(L))}{\operatorname{area}(\operatorname{bbox}(S))} C(L)+P \frac{\operatorname{area}(b b o x(R))}{\operatorname{area}(\operatorname{bbox}(S))} C(R)$, since the function is recursive, we can approximate it by just using the number of polygons in the sets, obtaining $C(L, R)=\frac{\operatorname{area}(b b o x(L))}{\operatorname{area}(b b o x(S))}|L|+P \frac{\operatorname{area}(b b o x(R))}{\operatorname{area}(b b o x(S))}|R|$
what do we want now is the $\min _{L, R} C(S)$:
sort the $p_{i} \in S \rightarrow p_{1} \ldots, p_{n}$
for $j=0 \rightarrow n$:
calculate the cost $c\left(\left\{p_{1} \ldots, p_{j}\right\},\left\{p_{j+1} \ldots, p_{n}\right\}\right)$
if cost is small of the minimum found: remember j

